496 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

The above procedure is used by Auld® in
the solution for magnetostatic modes of
spheres and is fully described in Lax and
Button.® In Schlémann’s (10), the magnetic
field % is not a source term. It must have the
same spatial variation as «, since both % and
a are simply the variables in a homogeneous
set of equations. If % has an exponential de-
cay in the z-direction, so will @. That is, the
solution will consist entirely of the low-&
mode. If there is to be any high-k propagat-
ing spin wave in the solution for «, there
must be a high-k propagating wave in k.
Obviously, the unperturbed field of a con-
ductor will not contain a short-wavelength
variation. The boundary wvalue problem
must be solved to determine whether such
a component is present in the YIG,

We believe that Schlémann’s (12) is not
an inhomogeneous equation and that the
distributed source interpretation is not cor-
rect. The calculations which follow his (12)
are, however, essentially correct because the
excitation is not calculated from the un-
perturbed (without YIG) magnetic field.

Incorrect interpretation of Schlémann’s
(10) leads to serious errors when the fre-
quency is such that short wavelength spin
waves are allowed by the dispersion rela-
tion. Under these conditions, the low-&
(electromagnetic) solution is also allowed
and the % term in Schlémann’s (10) matches
the unperturbed field almost exactly. (“Un-
perturbed” means YIG dielectric constant
assumed but magnetic dipoles ignored.)
Our boundary value solutions show that
very little spin wave excitation is obtained,
and we think that it makes little difference
how many conductors are used or whether
they are flat or round.

To date, the only effective linear method
of coupling an electromagnetic field to high-
k, propagating spin waves is, as predicted
by Schlémann, to couple at a point where
the spin-wavelength approaches the elec-
tromagnetic wavelength. By shaping the
dc magnetic field, one can slide along the
dispersion relation to the high-%2 region.
Under these conditions, spin-phonon cou-
pling is unavoidable and spin wave defocus-
ing can become a serious problem.

Our calculations are lengthy and not
suitable for this published correspondence.
They will be supplied to interested workers.
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Messrs. Kaufman and Soohoo?

The idea of exciting spin waves in a ma-
terial by excitation of a specimen with a
field that extends only a short distance into
the material was proposed before us by
Liithi.8 In our paper® we describe a possible
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method of accomplishing this by using a
fine wire. LaRosa and Vasile maintain that
this scheme (and, by inference, any similar
scheme) is not valid, since the magnetiza-
tion must always have the same periodicity
as the applied RF #-field; and that the RF
h-field must have the same spatial variation
as the magnetization.

It should be pointed out here that the
excitation of a standing spin wave in a
film, first demonstrated by Seavey and
Tannenwald,? is accomplished with an RF
magnetic field distribution that is essen-
tially of constant amplitude throughout the
film, yet the spin wave local amplitude
varies in the manner of a standing wave dis-
tribution. Accordingly, it is not necessary
to have the same spatial distribution for
RF field as for magnetization.

LaRosa and Vasile state that Schls-
mann's (12)* is not an inhomogeneous
equation. This equation is based on the
equation of motion of the magnetization,
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For the infinite medium, assuming fields
H=gh,+a,h,+3.Hy and magnetization
M=gdm,~+3d,my,~+3,M,, where all RF terms
vary as exp (jof), this equation is
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Here, following Schlémann? he=he4jhy;
o=y +jm, Neither the spatial distribu-
tion of ko nor that of m, have been specified.
As usual, the solution to the homogeneous
portion of this equation results in o
=A exp (jkz)+B exp (—jkz), where
k= [(—vHy—w)/vH.,02]¥? is the usual dis-
persion relation for z-directed spin waves.
(Here only variation with z was assumed.)
Equation (2) above is therefore clearly in-
homogeneous; the %, allowing for additional
solutions. In these, the A and B coefficients
are now not constants where %, is nonzero,
but they allow for “normal mode” propaga-
tion of 4, B where hy=0. The scheme is
analogous to the piezoelectric transducer.

Since this analysis is based solely on the
equation of motion (1), it is not completely
correct; for a more rigorous solution would
also include Maxwell's equations. However,
since the exchange power content of a spin
wave far exceeds that of the usual Poynting
vector power,® this treatment should be
fairly accurate.

It is of interest to mention here that an
earlier analysis!! states the relation between
hj. and my, of a spin wave, based on Maxwell’s
equations. In this normal mode analysis, we
find

_ 4r(wle,/cD)my — dak(k-my) .

k2 — wl,/c?

hy, 3)

Curiously, h; and m;, here do not have the
same spatial distribution, because of the
presence of the k-my, term.
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In conclusion, we wish to state that while
our transmission line one-dimensional analy-
sis is a simplification over the actual physi-
cal picture, we feel that this analysis is still
correct in principle, in the light of the argu-
ments presented here.
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Messrs. LaRosa and Vasile?

1) Our comments apply to homogeneous
magnetic insulators. Spin waves are gener-
ated in thin films because of one or more
of the following complications: finite con-
ductivity, variation of 4xM, with depth,
surface pinning (which prevents uniform
precession), and small sample size in direc-
tion of propagation.

2) We are not sufficiently familiar with
the piezoelectric transducer analogy to judge
its relevance.

3) We still believe that Maxwell’s equa-
tions solved simultaneously with the equa-
tions of motion yield a homogeneous set of
equations in 7, % or & There are no sources
distributed in the volume of the YIG. There
are no perturbations in the YIG medium
which could serve as sources via perturba-
tion theory.

12 Manuscript received March 8, 1966,

Reflection Measurements with
Broadband Frequency Modulation
Using Long Transmission Lines

This correspondence describes some
applications of broadband frequency modu-
lation for measuring reflections on moder-
ately long transmission lines. As known
from earlier publications on this subject [1],
[2], and from FM-radar techniques, a fre-
quency modulated wave train from a sweep
generator is fed into a transmission line. A
part of the energy is scattered back by re-
flections produced on the line or at the end
of it. A detector conveniently coupled to the
line near the generator provides for mixing
of transmitted and scattered wave ampli-
tudes, thus generating an intermediate fre-
quency signal (generally 0.1...15 kHz)
which can be processed by audio frequency
techniques. ’

Ideally, the following equation holds for
this audio signal:

4rdfm
Vi =2 krs cos (———f Ar - ¢,.> I¢h)
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Manuscript received May 11, 1966; revised June
27, 1966.



1966 CORRESPONDENCE
SWEIEP GENERATOR 1SOLATOR
TRANSMISSION LINE WAVEGVIDE 153 1EC - R 100 (WR 90)
= = ! ! '
l.—j REFLECTIONS
AF = 18 o1y Va

DISPERSION VOLTMETER

EQUALIZER
FILTERS,
DIFFERENTIAL
AUDIO AMPLIFIER

SAWTOOTH

GENERATOR ~IRL

[

L

X~Y - RECORDER

497

~d Fig. 1. Block diagram of the distance measuring system.
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where Vj is the output voltage of the detec-
tor, k& is a constant, 7, the magnitude of the
nth reflection, d, the distance of the nth
reflection, and ¢, the phase angle of the nth
reflection. f, is the sawtooth modulation
frequency, AF the modulation bandwidth,
and v the velocity of propagation on the line
(v is constant for coaxial lines, but frequency
dependent in the case of waveguides; (1)
holds, however, for both cases).

Two promising applications of the fore-
going principle were developed in detail;
the first measuring distance and magnitude
of a number of reflections on a transmission
line (e.g., an antenna feeder in a microwave
relay station), the second measuring magni-
tude and phase angle of the voltage reflec-
tion coefficient of microwave components
placed at the end of a delay line.

For the first case an experimental X-
band version was built (see Fig. 1). This
system proved to have many advantages
over a pulse radar of similar performance. It
was designed to plot directly reflection
magnitude vs. distance. A sensitivity of —70
dB (equivalent to r=0.0003 or VSWR
1.0006) referred to a short circuit and an
accuracy of +1 dB for the magnitude of a
reflection and of +3 cm for the distance of
a reflection were obtained. The useful range
of the experimental system was one to
twenty meters; however, it could easily be
adapted for longer feeder waveguide runs.

For the second case a broadband imped-
ance plotting system was developed, and
equally, an experimental X-band version
was buili: (see Fig. 2). This system operates
over the whole X-band presenting an oscil-
loscope or an x-y-ink recorder display of the

complex voltage reflection coefficient of an
unknown component. The experimental
system reached a sensitivity of —60 dB
(equivalent to r=0.001 or VSWR 1.002)
referred to a short circuit and an accuracy of
+1 dB for the magnitude and of +5° for
the phase angle, corresponding to +0.12r
within the useful range of 0.001<r<1. In
contrast to earlier developments [1], [2],
this system presents the measured imped-
ance (or admittance) directly in a Smith
chart display and extends the measurement
range about an order of magnitude to smaller
reflections.

In both applications a successful attempt
has been made to reduce the complexity of
the microwave part of the system to a mini-
mum by processing the signals in the audio
range. This makes the system easily adapt-
able to various frequency ranges and wave-
guide bands.

: ]More detailed analysis is given by Mahle
3]
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Upper and Lower Bounds on the
Characteristic Impedance of TEM
Mode Transmission Lines

INTRODUCTION

A numerical method of obtaining the
characteristic impedance of TEM mode
transmission lines, which has been described
by several authors [1], [2], has the major
disadvantage of giving little indication of
the resulting error. This correspondence
shows how it is possible to extend the finite
difference solution of Laplace’s Equation to
extract an upper and lower bound on the
exact solution by using variational formulas.
Examples illustrate the high accuracy of
solutions obtained with the aid of a digital
computer which has been programmed not
only to set up and solve the Laplace finite
difference equations by systematic over-
relaxation but also, at the same time, to
compute an upper and a lower bound on the
exact solution. Although the method has
been used in conjunction with a finite dif-
ference solution of Laplace’s Equation it can
also be used in conjuntion with the Rayleigh
Ritz method.
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